Evaluation of tigecycline penetration into colon wall tissue and epithelial lining fluid using a population pharmacokinetic model and Monte Carlo simulation.

نویسندگان

  • Christopher M Rubino
  • Lei Ma
  • Sujata M Bhavnani
  • Joan Korth-Bradley
  • John Speth
  • Evelyn Ellis-Grosse
  • Keith R Rodvold
  • Paul G Ambrose
  • George L Drusano
چکیده

The objective of these analyses was to assess the penetration of tigecycline into colon wall tissue and epithelial lining fluid (ELF). The analyses included data from subjects without infection (phase 1) and patients with intra-abdominal infections (phase 2/3). Steady-state serum samples were collected from all subjects/patients (n = 577), while colon wall specimens (n = 23) and ELF specimens (n = 30) were obtained from subjects without infection. Tissue and serum data were simultaneously comodeled by using the BigNPAG program, and a four-compartment, open model with zero-order intravenous input and first-order elimination was employed. To examine the full range of tissue penetration and the associated probabilities of occurrence, a 9,999-subject Monte Carlo simulation was performed with two outputs, one for ELF penetration and one for colon wall tissue penetration. Data were well fit using models described above, with all r(2) values above 0.95. For subjects without infection, the median (5th and 95th percentiles) colon wall and ELF penetration ratios were 1.73 (0.160 and 199) and 1.15 (0.561 and 5.23), respectively. Simulation results predict that tissue penetration varies considerably and likely explain unexpected clinical outcomes for those patients infected with strains at margins of the MIC distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Penetration of meropenem into epithelial lining fluid of patients with ventilator-associated pneumonia.

Antibiotic penetration to the infection site is critical for obtaining a good clinical outcome in patients with ventilator-associated pneumonia (VAP). Surprisingly few studies have quantified the penetration of β-lactam agents into the lung, as measured by the ratio of area under the concentration-time curve (AUC) in epithelial lining fluid (ELF) to AUC in plasma (AUC(ELF)/AUC(plasma) ratio). T...

متن کامل

Comparison of tigecycline penetration into the epithelial lining fluid of infected and uninfected murine lungs.

OBJECTIVES When evaluating the pharmacodynamics of antimicrobials, assumptions are often made relative to their pharmacokinetics. One example of this is applying tissue penetration results of uninfected hosts to those displaying a targeted illness. As tigecycline evolves into a potential treatment option for pneumonia, we determined whether the presence of a lung infection affected the penetrat...

متن کامل

Estimation of penetration rate of tunnel boring machines using Monte-Carlo simulation method

One of the most important parameters used for determining the performance of tunnel boring machines (TBMs) is their penetration rate. The parameters affecting the penetration rate can be divided in two categories. The first category is the controllable parameters such as the TBM technical characteristics, and type and geometry of the tunnel, and the second one is the uncontrollable parameters s...

متن کامل

Investigation and Comparison of Metal Nanoparticles on Dose Enhancement Effect in Radiotherapy Using Monte Carlo Simulation Method

Introduction: The main goal of radiation therapy is destroying the tumor so that the surrounded healthy tissues have received the least amount of radiation at the same time. In recent years, the use of nanoparticles has received much attention due to the increasing effects they can have on the deposited dose into the cancer cells. The aim of this study was to investigate the effects of nanopart...

متن کامل

Evaluation of Lung Dose in Esophageal Cancer Radiotherapy Using Monte Carlo Simulation

Background and purpose: Radiation therapy make an important contribution in the control and treatment of cancers. Lungs are the main organs at risk in esophageal cancer radiotherapy. Difference between the dose distribution due to the treatment planning system (TPS) and the patient's body dose is dependent on the calculation of the treatment planning system algorithm, which is more pronounced i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 51 11  شماره 

صفحات  -

تاریخ انتشار 2007